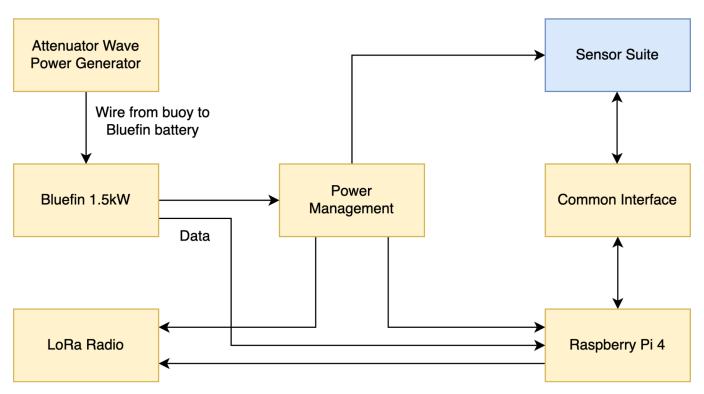
Prince William Sound Profiler Prototype

Scientific Shark

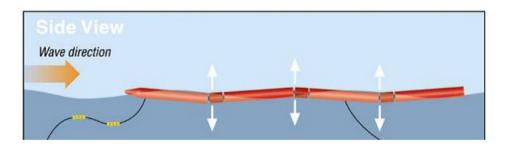
Roadmap

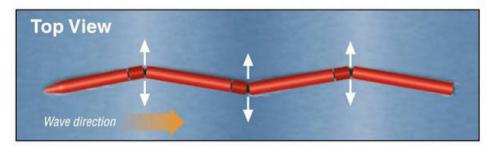
- Introduction
- System Block Diagram
- Power Design
- Communication Module
- Processor
- Current Status
- Schedule
- Cost Analysis
- Questions



Introduction

- Prince William Sound, Gulf of Alaska
 - Exxon-Valdez Oil Spill (1989)
- Prince William Sound autonomous moored profiler
 - Pain points of the profiler
 - Our solution and proposal

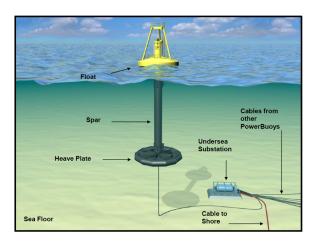

System Block Diagram



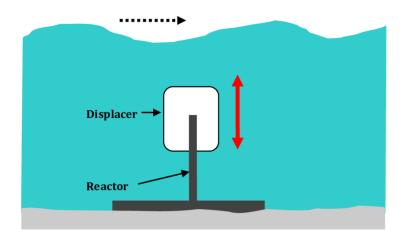
Design Solution: Power

Attenuator

- Wave energy converters that are oriented parallel to the direction of wave travel
- Rely on the flexing of joints to generate power
- Subsea cable connected between attenuator and profiler for constant charge
- Add-on



Design Alternative: Power


Point Absorber

- Utilizes the motion of the surface waves to generate electricity
- Resembles a buoy
- One of the most common design types

Submerged Pressure Differential

- Rests on or near the seafloor
- Relies on pressure fluctuations as a wave passes overhead

Design Solution: Communication Module

- Not the main area of expertise
- LoRa / LoRaWAN radio
- 2 Km line of sight
 - Up to 20 Km with directional antennas
- SPI interface
- 868MHz or 915MHz transmission/ reception
- Has prewritten libraries

Design Solution: Processor

	RPi 4	RPi 3 B+	RPi 3	Odroid C4	BeagleBone Black	
Power at	540 mA (2.7	350 mA (1.9	260 mA (1.4	1.9 W	290 mA	
idle	W)	W)	W)		(1.45 W)	
400% CPU	1280 mA	980 mA (5.1	730 mA (3.7	3.1-3.3 W	-	
load	(6.4 W)	W)	W)			
Clock Speed	1.5GHz	1.4GHz	1.4GHz	2.0 GHz	1.0 GHz	
RAM	1GB/2GB/4	1GB	1GB	4GB	512 MB	
	GB					

Status

Current Status

- Design solution has been created
- Major components have been selected
 - Wave Power Converter Attenuator
 - Processor
 - Communications Module

Foreseeable Problems/Issues

- Scaling down attenuator to meet project specifications
- Supplying enough power to the system

Schedule

Task Name	Duration	Start	ETA	14 Sep 2020	21 Sep 2020	28 Sep 2020	5 Oct 2020	12 Oct 2020	19 Oct 2020	26 Oct 2020	2 Nov 2020	9 Nov 2020	16 Nov 2020	23 Nov 2020
Task Name	Duration	Start	EIA	MTWTF	- M T W T F	: M T W T F	M T W T F	M T W T F	M T W T F	M T W T F	M T W T F	M T W T F	M T W T F	M T W T
Project Proposal	2 weeks	14 Sep	16 Sep											
Design and Analysis	3 days	14 Sep	25 Sep											
Define communications and processing aspects	1 day	14 Sep	23 Sep											
Define wave power generator and power aspects	2 days	14 Sep	23 Sep											
Finalize design	1 week	17 Sep	21 Oct											
Bill of Materials finalization	1 day	24 Sep	21 Oct											
Wave power generator construction	1 day	21 Oct	16 Nov											
RPi and LoRa Radio Integration	1 week	21 Oct	16 Nov											
Capstone Expo Preparation	1 week	16 Nov	23 Nov											
Capstone Expo	1 day	23 Nov	23 Nov											

Cost Analysis

Part	Count	Distributor/ Part Num	Cost per Unit	Total Cost	
Raspberry Pi 4	1	adafruit/4295	\$30*	\$30*	
LoRa Radio Bonnet	2	adafruit/4074	\$32.50	\$75	
Piston	1	TBD	\$100	\$100	
Generator	1	TBD	\$300	\$300	
Rubber Tubes	2	TBD	\$20	\$40	
Battery	1	Inspired Energy	\$202*	\$202*	

Total approximate price: \$747 (\$515 without battery or RPi)

Citations

- 1. "About Prince William Sound Science Center." Prince William Sound Science Center. https://pwssc.org/about/ (accessed September 14 2020).
- 2. "Adafruit LoRa Radio Bonnet with OLED RFM95W @ 915MHz," Adafruit. [Online]. Available: https://www.adafruit.com/product/4074. (Accessed: 13-Sep-2020).
- 3. "BeagleBone Black." Beagle Board. https://beagleboard.org/black. (accessed September 15, 2020).
- 4. J. Geerling. "Power Consumption Benchmarks." Raspberry Pi Dramble. https://www.pidramble.com/wiki/benchmarks/power-consumption (accessed September 13, 2020).
- 5. "ODROID-C4." ODROID. https://www.hardkernel.com/shop/odroid-c4/ (accessed September 15, 2020).
- 6. "Thetis Profiler." Sea-Bird Scientific. https://www.seabird.com/systems/thetis-profiler/family?productCategoryId=54627869948 (accessed September 13, 2020).
- 7. "What is LoRa®?" Semtech. https://www.semtech.com/lora/what-is-lora (accessed September 13, 2020)
- 8. Faizal, M., Ahmed, M. and Lee, Y., "A Design Outline for Floating Point Absorber Wave Energy Converters," *Advances in Mechanical Engineering*, vol. 6, Feb. 15, https://journals.sagepub.com/doi/10.1155/2014/846097 (accessed September 13, 2020).
- 9. "Energy And The Environment-A Coastal Perspective Attenuators." Coastal Energy And Environment.web.unc.edu.

http://coastalenergyandenvironment.web.unc.edu/ocean-energy-generating-technologies/wave-energy/the-pelamis-wave-energy-converter/

Questions?