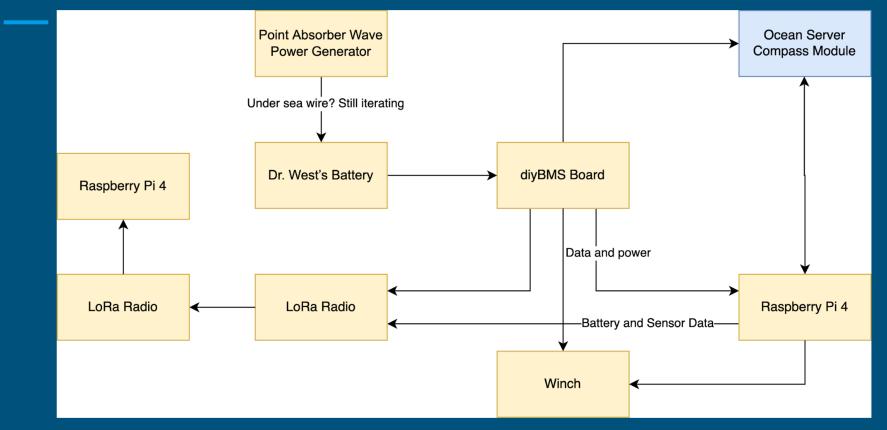
Design Review Presentation

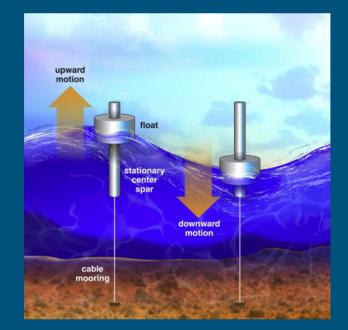
Scientific Shark

Celeste Smith, Srushty Changela, Rahil Ajani, Nicholas Nguyen, Richard Nguyen, Kombundit Chitranuwatkul

Background

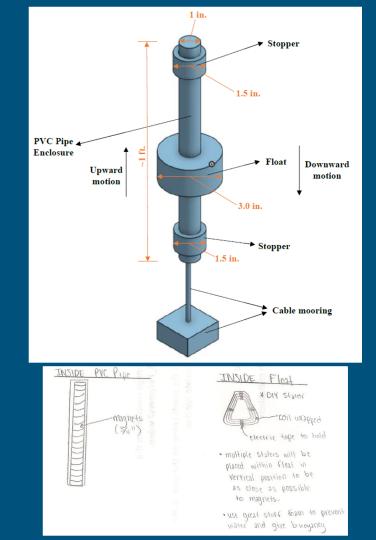

- Prince William Sound, Gulf of Alaska
- Exxon-Valdez Oil Spill (1989)
- Environmental monitoring: Autonomous moored profiler
- Current Problems:
 - Remotely charge battery
 - Data transmission capability
 - Proprietary system

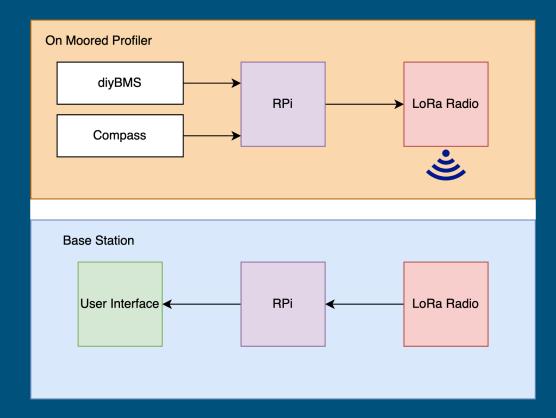
Agenda


- High Level Overview of Prototype
- Power Generation
- Battery Communications
- Example Sensor, Compass
- Wireless Communications
- User Interface
- Path to Completion, Schedule
- Cost Analysis

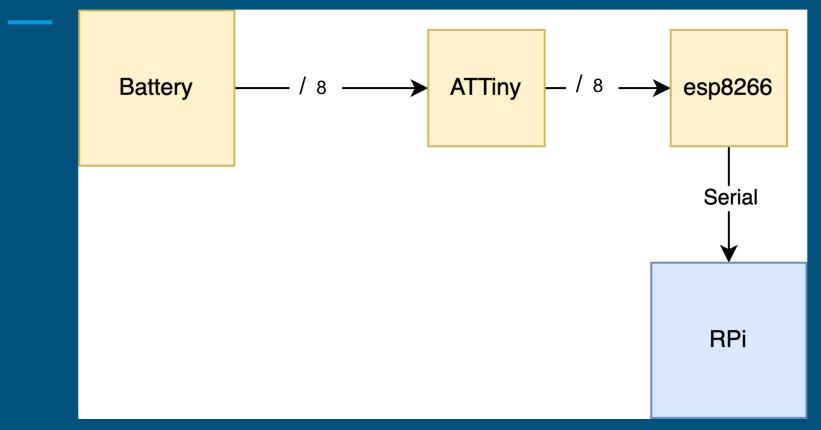
Block Diagram of Planned Prototype

Power Generator


- Point absorber instead of wave attenuator
- Structure
 - Buoy
 - Magnets in the middle tube
 - Stator float moving based on waves
 - Plates (doughnuts) to keep stator in place
 - Mooring to the seabed
- Generator -> Charging system -> Battery


Visual example of point absorber

Power Generator Visual


- Inside PVC:
 - Magnets stacked within
- Inside Float:
 - DIY coil stators
- 3D print custom doughnuts and float
- Mooring:
 - Cable and weight

Software/Hardware Integration

Battery Communication

Compass

OS Compass

Order	Bit value (base 10)	Parameter Name					
1	1	Azimuth					
2	2	Pitch Angle					
3	4	Roll Angle					
4	8	Temperature					
5	16	Depth (feet)					
6	32	Magnetic Vector Length					
7	64	3 axis Magnetic Field readings, x,y,z					
8	128	Acceleration Vector Length					
9	256	3 axis Acceleration Readings, x,y,z					
10	512	reserved					
11	1024	2 axis Gryo Output, X,y (discontinued Part)					
12	2048	Reserved					
13	4096	Reserved					

List of parameters from the compass

Radio

- Long range (LoRa) transmission of packets, low power consun
- I2C protocol, 915 MHz but can be configured to other frequencies
- Can utilize LoRaWAN (longer distance)

Still need to:

- Adafruit LoRa Radio Bonnet RFM95W
- Send/receive information from battery management system and compass

Radio

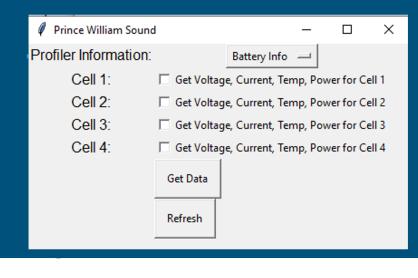
Radio 1 sends packet A

~4s

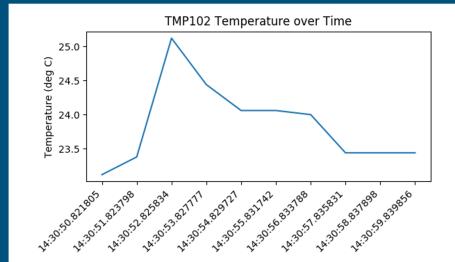
~4s

~1km

~1km



Radio 2 receives packet A


Radio 2 sends packet C

User Interface

	Voltage (Volts)	Current(Amps)	Temperature(C)	Power (W)
Cell 1	3.80	4.36	21	100
Cell 2	3.75	5.12	25	205
Cell 3	3.78	8.15	49	125
Cell 4	3.48	7.20	20	198

Future GUI plans

Current GUI example

Pathway to Success: Schedule

Task Name	Assigned Days	Chart	ETA	19 Oct	26 Oct	2 Nov	9 Nov	16 Nov	
Task Name		Days	Start	EIA	Week 10	Week 11	Week 12	Week 13	Week 14
Iterate on user interface	CompE	23	18 Oct	10 Nov					
Integrate radios, compass, battery communications	CompE	23	18 Oct	10 Nov					
Ordering/waiting for parts	All	7	18 Oct	25 Oct			100 Carlos - 100 Carlos		
Establish serial communications (esp. esp8266)	CompE	7	18 Oct	25 Oct					
Communicate with compass	CompE	8	26 Oct	3 Nov					
Point absorber assembly	EE	7	26 Oct	2 Nov					
Winch Integration	All	7	3 Nov	10 Nov					
Charging system	EE	7	3 Nov	10 Nov					
Finalize expo prototype and presentation	All	8	10 Nov	18 Nov					

Cost Analysis: Bill of Materials

Topics	Materials	Quality	Total Price
Power Generator	Magnet	10	\$89.30
	Temflex 3/4 in. x 60 ft. 1700 Electrical Tape Black	1	\$1.78
	Rare Earth 3/4 in. x 1/4 in. Disc Magnet (4-Pack)	1	\$190.42
Battery Communication	Raspberry Pi 4 15W Power Supply	1	\$8.47
Radio Communication	Adafruit LoRa Radio Bonnet with OLED	2	\$80.22
		Total	\$370.19

Reference

https://ocean-server.com/wpcontent/uploads/2018/08/0S5000_Compass_Manual.pdf Thank You! Any Question?